Elasticsearch:使用同义词 synonyms 来提高搜索效率

在我们的很多情况下,我们希望在搜索时,有时能够使用一个词的同义词来进行搜索,这样我们能搜索出来更多相关的内容。我们可以通过 text analysis 来帮助我们形成同义词。如果大家对 Elastic 的 analyzer 还不是很熟的话,请参阅我之前的文章 “Elasticsearch: analyzer”。文本分析通常应用于你建立索引时的所有文档以及发送给 Elasticsearch 的所有查询。在进行同义词搜索时,我们有如下的几种方案:

  • 在建立索引时 (indexing),通过 analyzer 建立 synonyms 的反向索引 (inverted index)
  • 在 query 时,通过 search analyzer 对查询的词建立 synonyms
  • 在 indexing 及 query 时,同时建立反向索引中的 synonym 及在 query 时为查询的词建立 synonyms

那么在实际的使用中,我们到底是用上述的哪种方案呢?在下面的例子中,你将看到在 query 时使用 synonym 会更加灵活,并且更容易让我们更新同义词的名单已经更好地支持 multi-word synonyms

在今天的文章中,我们将分别论述。

 

在 query 时对词进行同义词解析

首先,我们来创建一个具有如下 anaylzer 及 mapping 的一个索引:

PUT myindex
{
  "settings": {
    "analysis": {
      "filter": {
        "my_synonyms": {
          "type": "synonym_graph",
          "synonyms": [
            "China, chn, PRC, People's Republic of China"
          ]
        }
      },
      "analyzer": {
        "my_analyzer": {
          "type": "custom",
          "tokenizer": "standard",
          "filter":[
            "lowercase",
            "my_synonyms"
          ]
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "content": {
        "type": "text",
        "analyzer": "standard", 
        "search_analyzer": "my_analyzer"
      }
    }
  }
}

在上面,我们使用 synonym_graph 过滤器对 quey 时的词进行过滤。在这个过滤器中,我们把如下的一个词都视为同义词:

China, chn, PRC, People's Republic of China

在mapping 中,我们定义了 search_analyzer 为 my_analyzer,也就是说在 query 时,它会对所有的词进行分词。但凡有任何一个词是 China, chn, PRC, People's Republic of China 其中的一个,它都将被视为同义词。

我们首先来创建一个文档:

PUT myindex/_doc/1
{
  "content": "I like People's Republic of China"
}

运行上面的指令,我们将创建一个 content 为 I like People's Republic of China 的文档。

接下来,我们做如下的查询:

GET myindex/_search
{
  "query": {
    "match": {
      "content": "China"
    }
  }
}

那么显示的结果是:

{
  "took" : 256,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 1.4384104,
    "hits" : [
      {
        "_index" : "myindex",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 1.4384104,
        "_source" : {
          "content" : "I like People's Republic of China"
        }
      }
    ]
  }
}

可能有人说了,这是因为上面的 content 里本身就含有 China, 所以上面的结果证明不了什么。接下来,我们进行如下的搜索:

GET myindex/_search
{
  "query": {
    "match": {
      "content": "prc"
    }
  }
}

结果,我们可以发现,我们同样显示上面的搜索的结果。这个说明了这个同义词的搜索是成功的。

接下来,我们想搜索 silk road 也能搜索出中国来,那么我怎么做呢?

我们来执行如下的命令:

POST myindex/_close

PUT myindex/_settings
{
  "analysis": {
    "filter": {
      "my_synonyms": {
        "type": "synonym_graph",
        "synonyms": [
          "china, silk road, chn, PRC, People's Republic of China"
        ]
      }
    },
    "analyzer": {
      "my_analyzer": {
        "type": "custom",
        "tokenizer": "standard",
        "filter": [
          "lowercase",
          "my_synonyms"
        ]
      }
    }
  }
}

POST myindex/_open

我们可以通过更新  setting 来实现这个。在上面请注意:当我们更新一个索引的 index 时,我们必须先把它关掉,等设置好后,在重新打开。否则会有错误。那么经过上面的修改后,我们重新运行如下的搜索:

GET myindex/_search
{
  "query": {
    "match": {
      "content": "silk road"
    }
  }
}

那么上面的搜索结果将会显示我们之前显示的结果。在这里 silk road 也就是和之前的其它词都是同义词。

有人可能觉得上面在 settings 里配置太多的同义词很麻烦(如果同义词很多的话)。按照 Elastic 的官方文档,我们可以把所有的同义词放到一个文档中。首先,我们在 Elasticsearch 的 config 目录中,创建一个叫做 analysis 的子目录,然后创建一个叫做 synonyms.txt 的文档,而它的内容如下:

$ pwd
/Users/liuxg/elastic/elasticsearch-7.8.0/config/analysis
liuxg:analysis liuxg$ cat synonyms.txt 
"china, silk road, chn, PRC, People's Republic of China",
"elk, elastic stack"

在这里,我们多添加了一个 elk, elastic stack 的同义词。我们来创建一个新的索引:

PUT myindex1
{
  "settings": {
    "analysis": {
      "filter": {
        "my_synonyms": {
          "type": "synonym_graph",
          "synonyms_path": "analysis/synonyms.txt"
        }
      },
      "analyzer": {
        "my_analyzer": {
          "type": "custom",
          "tokenizer": "standard",
          "filter":[
            "lowercase",
            "my_synonyms"
          ]
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "content": {
        "type": "text",
        "analyzer": "standard", 
        "search_analyzer": "my_analyzer"
      }
    }
  }
}

运行完上的指令后,我们来创建一个文档:

PUT myindex1/_doc/1
{
  "content": "I love elastic stack"
}

然后我们做如下的搜索:

GET myindex1/_search
{
  "query": {
    "match": {
      "content": "elk"
    }
  }
}

上面的搜索结果显示:

{
  "took" : 451,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 0.5753642,
    "hits" : [
      {
        "_index" : "myindex1",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 0.5753642,
        "_source" : {
          "content" : "I love elastic stack"
        }
      }
    ]
  }
}

显然,我可以看到搜索 elk,我们就可以搜索到含有 elastic stack 的文档。

在实际的使用中,如果我们更新 synonyms.txt 文件,那么,我们可以使用如下的 API 来进行更新:

POST myindex1/_reload_search_analyzers

 

在建立索引时建立同义词

针对这种情况,我们可以在建立索引的时候,就把同义词建立好。这样,我们可以在 query 时,不使用同义词解析。在这种情况下,我们可以使用 synonym 过滤器,而不是 synonym_graph 过滤器。

我们接下来使用如下的命令来创建一个新的索引:

PUT myindex2
{
  "settings": {
    "analysis": {
      "filter": {
        "my_synonyms": {
          "type": "synonym",
          "synonyms": [
            "china, silk road, chn, PRC, People's Republic of China",
            "elk, elastic stack"
          ]
        }
      },
      "analyzer": {
        "my_analyzer": {
          "tokenizer": "standard",
          "filter": [
            "lowercase",
            "my_synonyms"
          ]
        }
      }
    },
    "number_of_shards": 1
  },
  "mappings": {
    "properties": {
      "content": {
        "type": "text",
        "analyzer": "my_analyzer"
      }
    }
  }
}

在上面,我们使用了 my_analyzer 作为 myindex2 在索引时使用的分词器。它将使用 synonym 过滤器,并把如下的词视为同义词:

"china, silk road, chn, PRC, People's Republic of China",
"elk, elastic stack"

我们可以使用如下的方法来测试这个 analyzer:

POST myindex2/_analyze
{
  "text": "I like elk a lot",
  "analyzer": "my_analyzer"
}

上面的命令显示的结果是:

{
  "tokens" : [
    {
      "token" : "i",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "<ALPHANUM>",
      "position" : 0
    },
    {
      "token" : "like",
      "start_offset" : 2,
      "end_offset" : 6,
      "type" : "<ALPHANUM>",
      "position" : 1
    },
    {
      "token" : "elk",
      "start_offset" : 7,
      "end_offset" : 10,
      "type" : "<ALPHANUM>",
      "position" : 2
    },
    {
      "token" : "elastic",
      "start_offset" : 7,
      "end_offset" : 10,
      "type" : "SYNONYM",
      "position" : 2
    },
    {
      "token" : "a",
      "start_offset" : 11,
      "end_offset" : 12,
      "type" : "<ALPHANUM>",
      "position" : 3
    },
    {
      "token" : "stack",
      "start_offset" : 11,
      "end_offset" : 12,
      "type" : "SYNONYM",
      "position" : 3
    },
    {
      "token" : "lot",
      "start_offset" : 13,
      "end_offset" : 16,
      "type" : "<ALPHANUM>",
      "position" : 4
    }
  ]
}

你可以看到,尽管在测试的 text 没有 elastic stack,只有 elk,但是显示的结果了含有 elastic 及 stack 这两个 token。

我们接下来使用如下的命令来创建一个文档:

PUT myindex2/_doc/1
{
  "content": "I like elk a lot"
}

我们使用如下的查询:

GET myindex2/_validate/query?rewrite=true
{
  "query": {
    "match": {
      "content": "elastic stack"
    }
  }
}

上面显示的结果是:

{
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "failed" : 0
  },
  "valid" : true,
  "explanations" : [
    {
      "index" : "myindex2",
      "valid" : true,
      "explanation" : """content:"elastic stack" content:elk"""
    }
  ]
}

从上面的显示的结果来看,当我们搜索 elastic stack 时,它同时匹配 content: "elastic stack" 以及 content: elk。也就是说,如果文档里含有 elk,那么这个文档也将被搜索到。我们做如下的搜索:

GET myindex2/_search
{
  "query": {
    "match": {
      "content": "elastic stack"
    }
  }
}

那么上面的命令显示的结果是:

{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 0.977273,
    "hits" : [
      {
        "_index" : "myindex2",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 0.977273,
        "_source" : {
          "content" : "I like elk a lot"
        }
      }
    ]
  }
}

显然它已经把我们的想要的结果搜索出来了。

 

总结

在上面,我们展示了两种方法进行同义词的查询。在实际的使用中,你可以根据自己的情况适当进行选择。当然,我们有可以把上面的两种方法进行同时并用。通过这两种方法,也有可能会造成搜索的精确度的问题。这个是你必须要想清楚的。这个就像我们撒网打鱼一样,把网撒大了,捞上来的也有可能不是我们想要的。

实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值