Elasticsearch:使用 Elasticsearch 进行地理位置搜索

Elasticsearch 是一个功能强大的搜索引擎,支持地理查询,但并不是每个人都习惯于处理空间数据。 如果你对地理处理了解不多,或者想通过Elasticsearch了解地理处理,那么本文适合你。在我们的现实生活中,我们经常使用的滴滴打车,美团送餐,美国的 Uber, Lyft 打车,还有一些交友 apps 等等,它们都是使用 Elasticsearch 进行位置搜索的例子。

 

Geo distance query

地理距离查询返回距离点最大距离的所有文档,例如:Dolores 想认识距离她约300米的所有人:

红色圆圈的半径为 300 米,我们可以看到只有 William 在圆圈内。

让我们来做一下 Elasticsearch 的实现。 首先,使用属性 name 和 location 创建一个 user_location 索引。

PUT user_location
{
  "mappings": {
    "properties": {
      "name": {
        "type": "text"
      },
      "location": {
        "type": "geo_point"
      }
    }
  }
}

location 的数据类型为 geo_point, 表示地球上的位置。 点具有经度和纬度(坐标)。 你可以在官方文档中检查所有可接受的 geo_point 格式。

现在,让我们为 William,Robert 和 Bernard 的位置创建文档。我们使用 _bulk API 来导入数据:

POST user_location/_bulk
{ "index" : { "_id" : "1" } }
{ "name" : "William", "location": "-25.443053, -49.238396" }
{ "index" : { "_id" : "2" } }
{ "name" : "Robert", "location": "-25.440173, -49.243169" }
{ "index" : { "_id" : "3" } }
{ "name" : "Bernard", "location": "-25.440262, -49.247720" }

为了说明问题的方便,我特地创建一个新的索引叫做 locations,它包含了 Dolores 的位置信息:

PUT locations
{
  "mappings": {
    "properties": {
      "name": {
        "type": "text"
      },
      "location": {
        "type": "geo_point"
      }
    }
  }
}
POST locations/_bulk
{ "index" : { "_id" : "1" } }
{ "name" : "William", "location": "-25.443053, -49.238396" }
{ "index" : { "_id" : "2" } }
{ "name" : "Robert", "location": "-25.440173, -49.243169" }
{ "index" : { "_id" : "3" } }
{ "name" : "Bernard", "location": "-25.440262, -49.247720" }
{ "index" : { "_id" : "4" } }
{ "name" : "Dolores", "location": "-25.442987, -49.239504" }

在上面的 _id 为 4 的文档就是 Doloes 的位置信息。我们来创建一个叫做 locations 的索引模式:

我们打开 Maps 应用:

 

我们发现这四个位置位于南美的某个地方。我们编辑  location 层的设置,当我们点击该位置的时候,显示名字及 id。我们调整合适的 zoom 大小:

从上面的图中,我们很清楚地看到每个人的相对的位置。离 Dolores 最近的就是 Willam,也就是那个被盖着的那个,接着就是 Robert。最远的就是 Bernard。请注意,我们上面的展示都是以 locations 这个索引来进行展示的。它里面含有 Dolores。我们现在使用 user_location 索引来进行搜索:

GET user_location/_search
{
  "query": {
    "bool": {
      "filter": {
        "geo_distance": {
          "distance": "300m",
          "location": "-25.442987, -49.239504"
        }
      }
    }
  }
}

在上面,我们针对 Dolores 来进行搜索。显示的结果是:

{
  "took" : 55,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 0.0,
    "hits" : [
      {
        "_index" : "user_location",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 0.0,
        "_source" : {
          "name" : "William",
          "location" : "-25.443053, -49.238396"
        }
      }
    ]
  }
}

也就是说在 Dolores 方圆 300m 之内,只有 William。如果我们把半径增加到 600 m,那么我可以看到 Robert:

Image for post

GET user_location/_search
{
  "query": {
    "bool": {
      "filter": {
        "geo_distance": {
          "distance": "600m",
          "location": "-25.442987, -49.239504"
        }
      }
    }
  }
}
{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 0.0,
    "hits" : [
      {
        "_index" : "user_location",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 0.0,
        "_source" : {
          "name" : "William",
          "location" : "-25.443053, -49.238396"
        }
      },
      {
        "_index" : "user_location",
        "_type" : "_doc",
        "_id" : "2",
        "_score" : 0.0,
        "_source" : {
          "name" : "Robert",
          "location" : "-25.440173, -49.243169"
        }
      }
    ]
  }
}

Geo polygon query

地理多边形查询可获取多边形内的文档。

“多边形是具有直边的封闭形状。 矩形,三角形,六边形和八边形都是多边形的例子。”

它由点列表表示。 两点之间最接近的路径是一条直线。 多边形的起点和终点均相同。 在下面的图上检查下面的植物园多边形。

Image for post

请注意,Elasticsearch 上的地理查询会检查文档的 geo_point 属性是否在多边形内。 例:Dolores 想知道植物园内的每个人。

Image for post

GET user_location/_search
{
  "query": {
    "bool": {
      "filter": {
        "geo_polygon": {
          "location": {
            "points": [
              "-25.44373,-49.24248",
              "-25.44297,-49.24230",
              "-25.44177,-49.23642",
              "-25.43961,-49.23822",
              "-25.43991,-49.23781",
              "-25.44170,-49.23647",
              "-25.44210,-49.23586",
              "-25.44218,-49.23506",
              "-25.44358,-49.23491",
              "-25.44406,-49.24139",
              "-25.44373,-49.24248"
            ]
          }
        }
      }
    }
  }
}

上面的搜索返回的结果:

{
  "took" : 15,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 1,
      "relation" : "eq"
    },
    "max_score" : 0.0,
    "hits" : [
      {
        "_index" : "user_location",
        "_type" : "_doc",
        "_id" : "1",
        "_score" : 0.0,
        "_source" : {
          "name" : "William",
          "location" : "-25.443053, -49.238396"
        }
      }
    ]
  }
}

在本文中,你学习了什么是地理点和地理多边形,以及如何通过 Elasticsearch 实现 geo_distance 和 geo_polygon 查询。 希望本文能对你的知识之旅有所帮助。