Kibana:Kibana 不仅仅是针对开发者的 - 它是为所有人开发的

当我第一次接触 Elastic Stack 时,坦率地说,我对 Kibana 强大的功能所折服,但同时也担心不会使用这个工具,因为它的功能确实太多。对于一个新手来说感觉还是觉得无从下手。对于很多人来说,他们可能都一直认为:Kibana 只为专业开发者所使用,你需要懂很多的 Elasticsearch 或者大数据的知识,你才会使用这个工具。也许之前的 Kibana 版本你可能是这样认为的,但是随着 Kibana 的发展以及版本的演化。现在的 Kibana 功能不仅更加强大,而且也易于使用。特别是在最近发布的版本 7.5 开始引入 Lens 以后,它彻底地消除了制作可视化的门槛。任何一个人稍微对数据有些感觉的人,都可以使用 Lens 制作强大的可视化。 

在我之前的文章 “Kibana:Kibana Lens 入门” 对 Lens 做了一些介绍。在今天的文章中,我将使用简单的视频来展示这个工具的强大。

 

Kibana 的演变

早在 2010 年,Elasticsearch 发布了,这个新的搜索引擎席卷了开发人员世界。 在早期,Kibana 采取了其最初确定的步骤,即作为 Elasticsearch 的用户界面:开发人员开始使用Kibana 作为更便捷的方式来显示数据,图表和其他可视化,而不是依靠熟悉的命令行闪烁来搜索其 Elasticsearch 数据。

过去十年中,Kibana 发生了很大变化! 如今,在 Kibana 中建立可视化变得如此简单和直观,数以百万计的人(从业务分析师到高管再到数据科学家)都使用它与数据进行实时交互。 作为进入 Elastic Stack 的窗口,Kibana 使你可以自由选择形状和查看数据的方式。 秉承于我们的DNA,它是免费开放的。

你可以通过以下几种方式亲自查看此内容-无需事先获得 Kibana 经验。

 

准备数据

在今天的体验中,我们为了展示数据的方便,我们直接使用 Kibana 自带的数据。我们选择 kibana_sample_data_logs 来进行展示:

这样我们就导入了 kibana_sample_data_logs 索引。

 

使用 Kibana Lens 轻松创建可视化

对于新的 Kibana 用户而言,Kibana Lens 是直接进入 Elasticsearch 中的可视化分析数据的理想方式。 Lens 可视化使你可以完全控制如何对数据进行切片和切块。 此外,它旨在支持现实世界中数据分析操作的曲折变化,这意味着你可以进行临时练习并更改视图。

kibana len 展示1

 

快速检查数据字段

使用 Lens,无需提前选择要在可视化中使用的数据源(索引)或字段。 Lens 会在前面显示 Elasticsearch 数据字段,使您可以通过单击查看字段值的细分,然后选择可以回答问题的数据。

kibana len 展示2

只需拖放即可查看

知道要查看的数据后,只需拖放一个字段,Lens 就会自动显示该数据。 Lens 还允许您引入其他数据字段和索引,这些数据和索引可以帮助您通过比较来加强分析。

kibana len 展示3

通过明智的建议节省时间

每次拖动鼠标时,Lens 都会建议你以其他方式可视化数据。 Lens 使所需的曲线更加平坦,以了解更多有关你正在使用的数据集的信息:它结合了其他 Kibana 用户的常见且成功的使用模式以及相关性排名,从而为你的数据提供了最佳的可视化类型。

kibana len 展示4

 

要了解有关 Kibana Lens 的更多信息,请查看我们的文档

 

使用 Canvas 展示你的数据

准备好提高一些先进性以使你的数据脱颖而出吗? 如果你想发挥自己的创造力,Canvas 是内置在 Kibana 中的数据演示工具,可让你自定义作品的每个像素。 创建具有徽标,颜色和其他定义你品牌的设计元素的动态仪表板,以便你可以通过讲述故事的方式展示 Elasticsearch 数据。如果你对 Canvas 还是不很熟的话,请参阅我之前的启蒙文章 “Kibana:Canvas入门”

虽然其他仪表板工具可以捕获滞后的数据快照,但 Canvas 中的图表就像流到你的 Elasticsearch 索引中的数据一样新鲜。 这意味着无论你是在关键任务 SOC 中使用 Canvas 还是更新执行团队,你的数据都是最新的并且能够支持实时决策。

最棒的是,Canvas 是 Kibana 的免费和开放功能-它支持 Elasticsearch SQL。

要了解有关 Canvas 的更多信息,请查看我们的入门博客Canvas 网络研讨会简介

 

去做点什么

使用 Kibana,你可以选择自己的冒险之旅:从折线图,饼图和 sunbursts 特等经典开始。 使用 Elastic Maps 挖掘位置数据,或利用我们精选的时间序列UI进行高级时间序列分析。 或通过无监督的机器学习来检测你的 Elasticsearch 数据中潜伏的异常。 我们是否提到了更多