Elasticsearch:如何使用 Elasticsearch 和 Python 构建面部识别系统

Elastic 专栏收录该内容
494 篇文章 87 订阅

你是否曾经尝试在图像中搜索目标? Elasticsearch 可以帮助你存储,分析和搜索图像或视频中的目标。

在本快速教程中,我们将向你展示如何构建一个使用 Python 进行面部识别的系统。 了解有关如何检测和编码面部信息的更多信息-并在搜索中找到匹配项。

在今天的练习中,我们将参照代码:https://github.com/liu-xiao-guo/face_detection_elasticsearch。你可以把这个代码下载到本地的电脑:

$ pwd
/Users/liuxg/python/face_detection
$ tree -L 2
.
├── README.md
├── getVectorFromPicture.py
├── images
│   ├── shay.png
│   ├── simon.png
│   ├── steven.png
│   └── uri.png
├── images_to_be_recognized
│   └── facial-recognition-blog-elastic-founders-match.png
└── recognizeFaces.py

在上面的代码中,有如下的两个 python 文件:

  • getVectorFromPicture.py:导入在 images 目录下的图像。这些图像将被导入到 Elasticsearch 中
  • recognizeFaces.py:识别位于 images_to_be_recognized 目录下的图像文件

 

快速基础知识

需要复习吗? 让我们简要回顾一些基本概念的一些基础知识。

面部识别

面部识别是使用面部特征来识别用户的过程,例如,为了实现身份验证机制(例如解锁智能手机)。 它根据人的面部细节捕获,分析和比较模式。 此过程可以分为三个步骤:

  • 人脸检测:识别数字图像中的人脸
  • 人脸数据编码:将人脸特征转换为数字表示
  • 脸部比对:搜寻和比较脸部特征

在示例中,我们将引导你完成每个步骤。

 

128 维向量

可以将面部特征转换为一组数字信息,以便进行存储和分析。

 

Vector data type

Elasticsearch 提供了 dense_vector 数据类型来存储浮点值的 dense vectors。 向量中的最大尺寸数不应超过2048,这足以存储面部特征表示。

现在,让我们实现所有这些概念。关于 dense_vector,你可以阅读我之前的文章 “Elasticsearch:基于 Vector 的打分”。

 

您需要的一切

要检测面部并编码信息,你需要执行以下操作:

请注意,我们已经在 Ubuntu 20.04 LTS 和 Ubuntu 18.04 LTS 上测试了以下说明。 根据你的操作系统,可能需要进行一些更改。尽管下面的安装步骤是针对 Ubuntu 操作系统的,但是我们可以按照同样的步骤在 Mac OS 上进行同样的顺序进行安装(部分指令会有所不同)。

 

安装 Python 和 Python 库

随 Python 3 的安装一起提供了 Ubuntu 20.04 和其他版本的 Debian Linux。如果你的系统不是这种情况,则可以使用此链接下载并安装 Python。

要确认您的版本是最新版本,可以运行以下命令:

sudo apt update 
sudo apt upgrade

确认 Python 版本为 3.x:

python3 -V

或者:

 python --version

安装 pip3 来管理 Python 库:

sudo apt install -y python3-pip

安装 face_recognition 库所需的 cmake:

pip3 install CMake

将 cmake bin 文件夹添加到 $PATH 目录中:

export PATH=$CMake_bin_folder:$PATH

在我的测试中,上述步骤可以不需要。你只要在任何一个  terminal 中打入 cmake 命令,如果能看到被执行,那么就可以不用上面的命令了。

最后,在开始编写主程序脚本之前,安装以下库:

pip3 install dlib 
pip3 install numpy 
pip3 install face_recognition  
pip3 install elasticsearch

从图像中检测和编码面部信息

使用 face_recognition 库,我们可以从图像中检测人脸,并将人脸特征转换为 128 维向量。

为此,我们创建一个叫做 getVectorFromPicture.py:

getVectorFromPicture.py

import face_recognition 
import numpy as np 
import sys
import os
from pathlib import Path
from elasticsearch import Elasticsearch

es = Elasticsearch([{'host':'localhost','port':9200}])

cwd = os.getcwd()
print("cwd: " + cwd)

# Get the images directory
rootdir = cwd + "/images"
print("rootdir: " + rootdir)

for subdir, dirs, files in os.walk(rootdir):
    for file in files:
        print(os.path.join(subdir, file))
        file_path = os.path.join(subdir, file)

        image = face_recognition.load_image_file(file_path)

        # detect the faces from the images
        face_locations = face_recognition.face_locations(image)

        # encode the 128-dimension face encoding for each face in the image
        face_encodings = face_recognition.face_encodings(image, face_locations)

        # Display the 128-dimension for each face detected
        for face_encoding in face_encodings:
            print("Face found ==>  ", face_encoding.tolist())
            print("name: " + Path(file_path).stem)
            name = Path(file_path).stem
            face_encoding = face_encoding.tolist()

            # format a dictionary to be indexed
            e = {
                "face_name": name,
                "face_encoding": face_encoding 
            }

            res = es.index(index = 'faces', doc_type ='_doc', body = e)

首先,我们需要声明的是:你需要修改上面的 Elasticsearch 的地址,如果你的 Elasticsearch 不是运行于 localhost:9200。上面的代码非常之简单。它把当前目录下的子目录 images 下的所有文件都扫描一遍,并针对每个文件进行编码。我们使用 Python client API 接口把数据导入到 Elasticsearch 中去。在我们的 images 文件夹中,有四个文件。

在导入数据之前,我们需要在 Kibana 中创建一个叫做 faces 的索引:

PUT faces
{
  "mappings": {
    "properties": {
      "face_name": {
        "type": "keyword"
      },
      "face_encoding": {
        "type": "dense_vector",
        "dims": 128
      }
    }
  }
}

让我们执行 getVectorFromPicture.py 以获取 Elastic 创始人图像的面部特征表示。 

python3 getVectorFromPicture.py

现在,我们可以将面部特征表示存储到 Elasticsearch 中。

我们可以在 Elasticsearch 中看到四个文档:

GET faces/_count
{
  "count" : 4,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  }
}

我们也可以查看 faces 索引的文档:

GET faces/_search

 

匹配面孔

假设我们在 Elasticsearch 中索引了四个文档,其中包含 Elastic 创始人的每个面部表情。 现在,我们可以使用创始人的其他图像来匹配各个图像。

 

为此,我们需要创建一个叫做 recognizeFaces.py  的文件。

recognizeFaces.py 

import face_recognition
import numpy as np
from elasticsearch import Elasticsearch
import sys
import os

from elasticsearch import Elasticsearch

es = Elasticsearch([{'host': 'localhost', 'port': 9200}])

cwd = os.getcwd()
# print("cwd: " + cwd)

# Get the images directory
rootdir = cwd + "/images_to_be_recognized"
# print("rootdir: {0}".format(rootdir))

for subdir, dirs, files in os.walk(rootdir):
    for file in files:
        print(os.path.join(subdir, file))
        file_path = os.path.join(subdir, file)

        image = face_recognition.load_image_file(file_path)

        # detect the faces from the images
        face_locations = face_recognition.face_locations(image)

        # encode the 128-dimension face encoding for each face in the image
        face_encodings = face_recognition.face_encodings(image, face_locations)

        # Display the 128-dimension for each face detected
        i = 0
        for face_encoding in face_encodings:
            i += 1
            print("Face", i)
            response = es.search(
                index="faces",
                body={
                    "size": 1,
                    "_source": "face_name",
                    "query": {
                        "script_score": {
                            "query": {
                                "match_all": {}
                            },
                            "script": {
                                "source": "cosineSimilarity(params.query_vector, 'face_encoding')",
                                "params": {
                                    "query_vector": face_encoding.tolist()
                                }
                            }
                        }
                    }
                }
            )

            # print(response)

            for hit in response['hits']['hits']:
                # double score=float(hit['_score'])
                print("score: {}".format(hit['_score']))
                if float(hit['_score']) > 0.92:
                    print("==> This face  match with ", hit['_source']['face_name'], ",the score is", hit['_score'])
                else:
                    print("==> Unknown face")

这个文件的写法也非常简单。它从目录 images_to_be_recognized 中获取需要识别的文件,并对这个图片进行识别。我们使用 cosineSimilarity 函数来计算给定查询向量和存储在Elasticsearch 中的文档向量之间的余弦相似度。

        # Display the 128-dimension for each face detected
        i = 0
        for face_encoding in face_encodings:
            i += 1
            print("Face", i)
            response = es.search(
                index="faces",
                body={
                    "size": 1,
                    "_source": "face_name",
                    "query": {
                        "script_score": {
                            "query": {
                                "match_all": {}
                            },
                            "script": {
                                "source": "cosineSimilarity(params.query_vector, 'face_encoding')",
                                "params": {
                                    "query_vector": face_encoding.tolist()
                                }
                            }
                        }
                    }
                }
            )

假设分数低于 0.92  被认为是未知面孔:

            for hit in response['hits']['hits']:
                # double score=float(hit['_score'])
                print("score: {}".format(hit['_score']))
                if float(hit['_score']) > 0.92:
                    print("==> This face  match with ", hit['_source']['face_name'], ",the score is", hit['_score'])
                else:
                    print("==> Unknown face")

执行上面的 Python 代码:

该脚本能够检测出得分匹配度高于 0.92 的所有面孔

 

搜寻进阶更进一步

面部识别和搜索可以结合使用,以用于高级用例。 你可以使用 Elasticsearch 构建更复杂的查询,例如 geo_queriesquery-dsl-bool-querysearch-aggregations

例如,以下查询将 cosineSimilarity 搜索应用于200公里半径内的特定位置:

GET /_search 
{ 
  "query": { 
    "script_score": { 
      "query": { 
    "bool": { 
      "must": { 
        "match_all": {} 
      }, 
      "filter": { 
        "geo_distance": { 
          "distance": "200km", 
          "pin.location": { 
            "lat": 40, 
            "lon": -70 
          } 
        } 
      } 
    } 
  }, 
       "script": { 
                "source": "cosineSimilarity(params.query_vector, 'face_encoding')", 
                 "params": { 
                 "query_vector":[ 
                        -0.14664565,
                       0.07806452,
                       0.03944433,
                       ...
                       ...
                       ...
                       -0.03167224,
                       -0.13942884
                    ] 
                } 
           } 
    } 
  } 
}

将 cosineSimilarity 与其他 Elasticsearch 查询结合使用,可以无限地实现更复杂的用例。

 

结论

面部识别可能与许多用例相关,并且你可能已经在日常生活中使用了它。 上面描述的概念可以推广到图像或视频中的任何对象检测,因此你可以将用例扩展到非常大的应用场景。

 

参考:

【1】https://www.elastic.co/blog/how-to-build-a-facial-recognition-system-using-elasticsearch-and-python

  • 0
    点赞
  • 0
    评论
  • 4
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值